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Abstract
We perform angle-resolved photoemission spectroscopy on 1T -TaS2 and 1T -
TaSe2 using synchrotron radiation. We observe a characteristic splitting
of the chalcogen p-derived valence bands along high symmetry directions.
Density functional theory calculation and group theory strongly suggest that this
splitting is due to spin–orbit interaction along one direction, and to symmetry
along the other direction. We note that, according to the Kramers degeneracy,
the spin–orbit interaction leaves every state doubly degenerate. Furthermore,
this study allows us to identify a mixing between bands with Ta 5d and Se 4p
character, possibly relevant for the different temperature behaviours of the two
compounds.

1. Introduction

Spin–orbit (SO) interaction is well known to be responsible for the splitting of degenerate
electron energy levels in atoms, molecules and solids. In the past it has played an important
role in describing the band structure of semiconductors [1, 2], and more recently in explaining
various splittings of surface states [3–7]. Its physical origin is relativistic, and can be
explained by the interaction of the magnetic momentum of the electron (spin) with the
magnetic field viewed by this electron because of its movement in the electrostatic field of
the proton. This gives an additional term to the Schrödinger equation which takes the form
HSO = (h̄/4mc2)( �∇V × �p) · �σ , where V is the external potential, �p is the momentum, and �σ
is the Pauli spin operator. It can also be written in the more friendly form HSO ∼ L · S, where
L and S are the orbital and spin angular momenta, respectively [8].

Here we report high resolution angle-resolved photoemission (ARPES) measurements
performed on 1T -TaS2 and 1T -TaSe2 at room temperature. ARPES is a powerful tool for
studying the energy and momentum distribution of electrons. The technical progress made
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Figure 1. Surface and bulk Brillouin zones of the 1T structure.

constantly to improve the resolution of the measurements continues to refine the information,
allowing a better understanding of the physics behind materials. 1T -TaS2 and 1T -TaSe2 have
attracted much attention because of their quasi-two dimensionality and the presence of charge
density waves (CDW) [9]. The comparison between these two compounds has also been
largely investigated because, despite their similar crystal structure and CDW symmetry, they
exhibit different physical properties [10–12]. Indeed, 1T -TaS2 shows two successive first order
transitions, from incommensurate CDW (ICCDW) to nearly commensurate CDW (NCCDW)
at about 350 K, and from NCCDW to commensurate CDW (CCDW) at about 180 K. In
particular, it appears that this latter transition is closely related to a Mott localization within
the Ta 5d band [13]. On the other hand, 1T -TaSe2 undergoes an ICCDW to CCDW transition
at about 430 K, but does not exhibit a bulk metal–insulator transition at low temperature. In
this paper we focus our discussion on the chalcogen (S, Se) p-derived valence bands where
a characteristic double peak is visible in the ARPES spectra. To explain this splitting we
compare self-consistent full potential linearized augmented plane wave (FLAPW) calculations
performed with and without considering spin–orbit coupling (SOC). The calculations strongly
suggest that SOC is at the origin of the splitting, but only in the centre of the Brillouin zone
(BZ) (�), and along �–A (see figure 1). We complete our investigation with group theory.
Group theory provides methods for obtaining qualitative information about degeneracies of
electron energy levels and crystal wavefunctions only from symmetry considerations [14, 15].
This study confirms and allows a better understanding of the results from FLAPW calculations.

2. Experiment and calculation

Photoemission measurements were carried out at room temperature using a high resolution
angle-resolved photoemission spectrometer (SES-2002) at the SIS beamline X09LA of the
Swiss Light Source. The energy and angular resolutions were below 10 meV and ±0.3◦,
respectively. Pure 1T -TaS2 and 1T -TaSe2 samples were prepared by vapour transport [16, 17]
and cleaved in situ at pressures in the lower 10−10 mbar region. The quality and the orientation
of the crystal structure were checked by low energy electron diffraction (LEED). The electronic
structure calculations are made using the WIEN package [18], implementing the FLAPW
method within the framework of density functional theory (DFT). The generalized gradient
approximation was used for the exchange–correlation potential [19]. SOC has been included
in the calculations in a second variational step as explained in [20]. For both samples the
calculations are performed for the non-reconstructed (without CDW) crystallographic structure
with space group P 3̄m1. The lattice parameters are a = b = 3, 36 Å, c = 5, 85 Å and
a = b = 3, 48 Å, c = 6, 27 Å for the 1T -TaS2 and 1T -TaSe2, respectively.



Spin–orbit splitting in the valence bands of 1T -TaS2 and 1T -TaSe2 3273

Figure 2. Carpets for 1T -TaS2 (a) and 1T -TaSe2 (b). (c) and (d) EDCs extracted at � from the
carpet. The black lines correspond to the fit function resulting from the sum of the Gaussians in
dotted grey lines.

3. Results and discussion

Figures 2(a) and (b) show carpets, (sets of energy distribution curves (EDCs) plotted in grey
scale with high intensity in black) measured within the � ALM plane along the high symmetry
direction �̄–M̄ of the hexagonal surface BZ, for 1T-TaS2 and 1T -TaSe2 with photon energies of
21.5 and 19.5 eV, respectively. In 1T -TaS2 the chalcogen p-derived bands are largely separated
from the Ta 5d-derived bands which lie near the Fermi level, in contrast to what we see for
1T -TaSe2, where the Se p-derived bands and the Ta 5d-derived bands are very close. It is clear
from these data that both S 3p-derived bands and Se 4p-derived bands are split. This splitting
is minimal at normal emission (0◦) but still visible, as can be seen on the fits of the normal
emission spectra shown in figures 2(c) and (d) (vertical cuts across the carpet). To explore the
evolution of these bands along the �–A direction the measurements are repeated for different
photon energies. The results are presented in figures 3(a) and (b), where we show the peak
positions obtained from the fit functions of the vertical cuts at normal emission (e.g., the white
circles on the curves (figures 3(a), (b)) correspond to the peak positions found in figures 2(c)
and (d)). A free electron photoemission final state, as plotted in figures 3(c) and (d), is
assumed to determine the k-point within the BZ4. For the split S 3p-derived bands (figure 3(a))
we obtain two parallel bands over the whole measured region and a constant splitting of the
order of 100 meV. For the Se 4p-derived bands (figure 3(b)), the upper band position passes

4 The k-point positions are calculated using the usual photoemission formula k = √
0.263(h̄ω − EB − φ + V0) with

h̄ω, EB, φ and V0 denoting the photon energy, the binding energy, the sample work function and the inner potential,
respectively. We assume the following reasonable values V0 = 13 eV, φ = 3.5 eV and EB = 1.3 eV for 1T -TaS2 and
V0 = 11 eV, φ = 3.5 eV and EB = 0.5 eV for 1T -TaSe2.
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Figure 3. Dispersion of the split chalcogen p-derived bands along the �–A direction for 1T -TaS2
(a) and 1T -TaSe2 (b). The white circles correspond to the peak positions found from the fit in
figures 2(c) and (d). The other peak positions are determined in the same manner but from EDCs
taken at different photon energies. A cut in reciprocal space for 1T -TaS2 (c) and 1T -TaSe2 (d)
with free electron final state wavevectors for various photon energies. The black arrows show the
region measured by changing the photon energy.

through a maximum, whereas the lower band position increases constantly. This results in a
change of the magnitude of the splitting from 200 meV near A to 100 meV near �.

Band structure calculations performed without considering the SOC are presented in
figures 4(a) and (b). In grey are represented the Ta 5d-derived bands near the Fermi level
in the �–A region and in black at 1 eV, and 0.2 eV binding energy, respectively, the S and Se
p-derived bands.

The most interesting observation is that the calculated S and Se p-derived bands are split
along�–M but not along�–A, indicating that the measured splittings of the chalcogen p-bands
have different physical origin, and we can already say that the splitting along �–M is due to
the crystal field and has its origin in the symmetry. However, the splitting along�–A observed
in our measurements is reproduced by the calculations of figures 4(c) and (d) where the SOC
was accounted for. Indeed, for the two materials, as we can see in the region delimited by the
grey rectangles, the calculations reproduce the behaviour of the bands measured in figures 3(a)
and (b) well. The magnitude of 100 and 360 meV for the splitting predicted by the calculations
is in good agreement for 1T -TaS2 but exaggerated in the case of 1T -TaSe2. For 1T -TaSe2

an additional effect of the introduction of SOC in the calculation is the crossing between the
upper Se 4p-derived band and the lower Ta 5d-derived band. Therefore, the upper measured
band in figure 3(b) is the upper Se 4p-derived band from k⊥ = 2.64 to 2.88 Å−1 (the crossing
point) and the lower Ta 5d-derived band from k⊥ = 2.88 to 3.05 Å−1. Thus we measure a
splitting only up to this crossing point, then the upper Se band is no longer visible. This mixing
or hybridization (confirmed here by the measurement) between Ta and Se derived bands has
played an important role in explaining the differences in physical properties of the isostructural
1T -TaS2 and 1T -TaSe2 [11].
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Figure 4. (a)–(d) Calculated band structures. In the calculations with SOC (c) and (d) the regions
corresponding to figures 3(a) and (b) are shaded in grey.

For quantitative information, as shown for the study of SOC in semiconductors [1], the
atomic splitting is a good indicator for the magnitude of the SO splitting in valence bands.
The atomic splitting of the 3p level in S is 95 meV [21]. This value is of the same order as the
magnitude measured for the S 3p-derived valence band, which confirms the isolated character
of the S atoms in 1T -TaS2. The splitting of the 4p level in Se is 418 meV [21], approximately
twice as large as the measured SO splitting. This reduction of the splitting in the Se 4p valence
band may be a consequence of the mixing with the Ta 5d bands, where the electrons not only
feel the Se nuclei but are also influenced by the Ta nuclei. A similar anomaly in SO splitting
has already been seen in semiconductors [22].

Therefore, the comparison between band structure calculation and ARPES measurements
immediately suggests that the splitting along �–M is the result of symmetry, whereas the SO
interaction causes the splitting along �–A. The major difference between the two compounds
lies in the interaction of the chalcogen atoms with the Ta. Whereas we can neglect this
interaction for 1T -TaS2, there is a strong mixing between Ta 5d-derived bands and Se 4p-
derived bands. This can explain in part the relatively weak splitting found in TaSe2. The
discrepancy between calculation and measurements for the magnitude of the Se 4p-derived
band splitting can be explained by the introduction of SOC as a perturbative calculation in the
Wien code.

Now we will show that the same conclusions about the origin of these splittings can be
obtained with only a few considerations using group theory. Group theory gives us tools to
deduce some of the properties of the energy levels of electrons in the crystal without solving
the corresponding Schrödinger equation. To understand how the symmetry properties of a
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solid help us to extract some information about the solutions of the Schrödinger equation
Hψ = Eψ , we just give a short reminder below. Consider a set of degenerate solutions
ψ
µ

i of the Schrödinger equation. We have Hψµi = Eµψ
µ

i , for i = 1, . . . , nµ. This set of
eigenfunctions forms a function space associated with the eigenvalue Eµ. Now the key point,
as H is invariant under all the transformation operators � corresponding to the symmetry
operations R of the considered symmetry group ([H,�] = 0), �ψµj is also an eigenfunction
of H with eigenvalue Eµ. It follows that �ψµj is a member of the function space for energy Eµ.

We can then write �ψµj = ∑nµ
i=1 Dµ

i j (R)ψ
µ

i , j = 1, . . . , nµ. In this manner a set of matrices
Dµ(R) is built which is homomorphic with the symmetry group. This set of matrices forms a
representation of the symmetry group, and the linearly independent degenerate wavefunctions
ψ
µ

i for energy level Eµ form a basis for the representation called �µ. Since we know all
the irreducible representations of the symmetry group we can deduce some information about
the possible solutions of the Schrödinger equation. As a matter of fact each energy level
corresponds to an irreducible representation, and the dimension of this representation gives the
degree of degeneracy of this level. How do we build these irreducible representations without
knowing the solutions ψi ? Group theory, with the use of mathematical rules, allows us to
construct character tables of the symmetry group and to extract from these tables the properties
of the irreducible representations. In the case of a crystal, all the symmetry information is
contained in the space group which is, according to the international notation, P 3̄m1 for 1T -
TaS2 and 1T -TaSe2. The tables for single and double groups (the ones necessary for SOC) of
this space group are not displayed here but are available in [23]. To denote the representations
of the group of vector �k we follow the notation of [23]. We assume that the p chalcogen valence
bands are derived only from the three S and Se px , py, pz orbitals. This is an approximation but
we might expect that for �k vectors of high symmetry these orbitals give a reasonable description
of the wavefunctions. First, we begin by neglecting the spin of the electron (study without
SOC) and we restrict the study of the degeneracy to the three �k vectors � (centre of BZ), �
(any intermediate point on the line �–A) and� (point along �–M). The results obtained from
this study (without SOC) in the framework of the group theory are summarized in figure 5(a)
and, for the case with SOC, in figure 5(b). The irreducible character table of the group of
� [23] shows directly that the orbital pz belongs to the irreducible representation�−

2 (1), where
the number in parentheses (i.e. (1)) indicates the dimension of the representation, and that the
orbitals px and py form a basis of the irreducible representation �−

3 (2). Hence, there are two
‘bands’ in �, one non-degenerate and one doubly degenerate. The use of the compatibility
rule shows that the degeneracy stays the same along � but that the doubly degenerate �−

3
level is split along � in two non-degenerate states. This corresponds exactly to the behaviour
observed in the calculations (figures 4(a) and (b)), and confirms that the splitting along �–M
is a consequence of the lowering of symmetry from � to �.

Now we observe the effect of introducing SOC. First we note that adding spin simply
doubles the degeneracy of every state. But when SOC is turned on more dramatic changes in
the bands can occur, such as the lifting of degeneracies. If this is the case, inspection of the
character table has to predict these effects. In terms of group theory, the introduction of SOC
implies that we have to work with the double groups introduced by Bethe [24]. In other words
the eigenfunctions of the Hamiltonian containing the SOC term (H + HSOC) form a basis for
the irreducible representations of the double group. To find these irreducible representations
we proceed as follows. We start from the irreducible representations (�SG) of the single group
found in the previous study without SOC (i.e. for the k-point �: �−

2 (1) and �−
3 (2)). To each

of these representations (�SG) corresponds an irreducible representation (�DG) of the double
group which can be identified straightforwardly by comparing the characters. For the k-point
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Figure 5. The schematic band structure obtained from group theory (see text).

�, the representation �SG = �−
2 induces the representation of the double group �DG = �−

2 ,
and �SG = �−

3 induces�DG = �−
3 . As we introduce the spin, the eigenfunctions are no longer

linear combinations of only the px , py , pz orbitals, but the product of these orbitals with the
spin functions α and β. Thus we have to identify for which irreducible representation �S (S
for spin) of the considered double group the spin functions α and β form a basis. For the
double group of the k-point �, �S = �+

4 . Finally the irreducible representations of the double
group for which the eigenfunctions of the Hamiltonian H + HSOC form a basis result from the
reduction (if necessary) of the representation obtained by the direct product�DG ⊗�S . For the
k-point � we get the following: �−

2 ⊗ �+
4 = �−

4 (2) and �−
3 ⊗ �+

4 = �−
5 (1) + �−

6 (1) + �−
4 (2).

These results show that the introduction of SOC doubles the degeneracy of the band �−
2

and splits the band �−
3 into two non-degenerate and one doubly degenerate bands. However,

this last result seems to be in contradiction with the Kramer degeneracy (each level of a system
containing time reversal symmetry and inversion symmetry is at least doubly degenerate [8]).
But in fact the two representations �−

5 and �−
6 correspond to the same energy. Hence �−

3
splits into two doubly degenerate bands. We again use the compatibility rule to show how
the degeneracy evolves when moving from � to � or �. Along �, SOC simply doubles the
degeneracy of the three distinct bands, and along �, the behaviour is similar to that at �. To
summarize, the most important effect of SOC is the splitting at � and � of the level �−

3 into
two bands (�−

5 , �−
6 ) and �−

4 . The origin of this SO splitting is even more clearly illustrated by
calculating, using the projection method, the basis functions of these representations obtained
from the six p orbitals (taking into account spin) and changing the basis in the more adapted
J MJ basis (total angular momentum, projection of this angular momentum). This shows that
the basis functions of �−

5 +�−
6 are pure J = 3/2 states, whereas the basis functions of �−

4 are
a mixing of J = 1/2 and 3/2 states.

4. Conclusion

Our ARPES measurements exhibit a splitting of the chalcogen p-derived valence bands along
the high symmetry directions A–�–M in 1T -TaS2 and 1T -TaSe2. Based on density functional
theory calculations, we attribute this splitting to the symmetry along �–M and to the SO
interaction along�–A. The introduction of SOC has a considerable effect on the band structure;
in particular, it splits the degenerate bands along the k⊥ direction (�–A) of the S–Se p-derived
bands, the splitting along �–M being already reproduced by a non-relativistic calculation. For
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completeness and understanding we have studied the effect of the SO within the framework
of group theory. This has the advantage of describing the evolution of the degeneracies of the
chalcogen bands which, for simplicity, are constructed purely from p orbitals. We note that
although the SO interaction lifts one degeneracy, it still leaves all states doubly degenerated due
to the presence of inversion symmetry. It is a well known fact that the SO interaction does not
separate states of opposite spin if the lattice potential has a centre of inversion [8]. This is not
the case at the crystal surface and, for example, it has been observed that SOC is responsible
for a spin splitting of surface state bands leading to non-degenerate states [3, 7]. Finally, this
study allows us to identify a key difference between 1T -TaS2 and 1T -TaSe2, namely the strong
mixing between the Ta 5d and Se 4p derived bands.
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